
If two were three, what would Hex be?

Alex Fink∗

Hex is an abstract strategy board game with appealingly simple rules, in-
vented by Piet Hein in 1942 and independently by John Nash in 1947, and first
disseminated by Martin Gardner in Mathematical Games [4].
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Figure 1: A recently begun game of Hex.

Hex is played by two players, Black and White, on an equilateral rhombic
board composed of hexagonal cells, often 11 to a side, though Nash recom-
mended 14. A possible early-game position is shown in Figure 1; here and
henceforth we represent White territory with speckled cells. A small fringe
around the outside of the board is coloured as in the figure from the beginning,
associating two sides of the rhombus with each player. When the game begins,
the cells of the rhombus are empty. At each turn, the player to move must fill
a currently unfilled cell with their own colour. So the position depicted in the
figure could have arisen after three plays, assuming Black moved first.

The game finishes when every cell of the board is coloured. (Formally, at
least; if the winner becomes clear before the board fills you’re welcome to stop
the game early.) When the board is entirely coloured we consider the common
boundaries, or borders, of black and white regions. Points on the borders lie
primarily along the edges of cells. Some cell vertices will be border points as
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well, and for each border vertex exactly two of the edges issuing from it will be
borders. So the borders form a collection of disjoint nonforking paths. These are
loops except for those which run into one of the endpoints a, b, c, d in Figure 1.
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Figure 2: Borders in a corner of a finished game of Hex.

These four endpoints are joined in two pairs by the borders. Borders can’t
cross—nor can it change which colour is to your left side as you walk along
a border from end to end—so the pairing that joins a with c and b with d is
impossible. That leaves either a with b and c with d, in which case we declare
Black to be the winner, or a with d and c with b, in which event we give the win
to White. In other words, a player wins in Hex if the borders follow the board
edges not of their own colour. One of these two pairings is always established,
so this proves that every game has a unique winner.

“But wait”, you may be saying if you’ve seen Hex before, “isn’t the objective
to connect your two sides with cells of your colour?” Indeed it is; this is a
restatement of the same goal. If Black (say) is successful in building a path of
black stones connecting the two black sides of the board, cutting off a and b
from c and d, they’ve thereby prevented White from running a border across
this path, and assured themself victory. Conversely in any game won by Black,
the Black cells verging on the border that joins a to b connect the two black
sides. That is: a player wins in Hex if they separate the border endpoints two
and two according to their own pairing by a path of stones of their own colour ;
and such a separating path connects the two sides of the board of their colour.

This interpretation in terms of forming connections is of course the original
and widely known one, on account of which abstract games in the genre repre-
sented by Hex are known as connection games. The border interpretation which
we take here as primary is first suggested in David Gale’s treatment [3].

In fact many connection games can have their winning condition stated in
terms of borders, though in the majority of cases the resulting rule is rather
forced. The less artificial end of the gamut is represented for instance by Mark
Steere’s Atoll [6], whose winning condition can also be stated in terms of estab-
lishing groups of pairwise connections among endpoints, and by Rombo, which
we take up below.

Some months ago, during teatime discussions in the Berkeley math depart-
ment lounge, the idea arose of generalising Hex to three players, or three di-
mensions, I forget which first; the feeling soon descended on us that the two



properties would go together nicely. But these initial explorations stayed within
the connection game framework, and we never hit upon a satisfying ruleset, one
which preserved the property that a unique winner should exist. Some time
later it occurred to me to try to generalise the rules based on borders instead,
and in this vein I came to invent the game Trunc, which is my subject here1. My
investigations of Trunc are still preliminary; I haven’t gotten my head around
the game enough to play reasonably, or to speak to any points of strategy. This
writeup therefore centres on the process of invention.

Take any three-dimensional board divided into cells, and consider a finished
three-colour game. The analogue of our borders in two dimensions, which we
call borders still, will now be points which are on the common boundary of
all three colours. The borders lie principally along cell edges, and will form a
collection of nonforking paths so long as one is careful not to allow more than
two to meet at a vertex. In 2D, Hex arranged this by choosing a hexagonal
tiling, with only three edges emanating from each vertex. Four edges would
have been too many, for all four could be borders (this is why Hex played on
the square tiling so readily ends without either player making a connection). In
3D the least number of convex polyhedral cells that can meet at a vertex is four,
achieved among uniform tilings of three-space only by the truncated octahedral
tiling of Figure 3. Again, this minimum number of cells at a vertex, i.e. four, is
as many as we can allow; any way to fit five cells around a vertex allows four
borders to meet there. So to ensure that the borders form paths, Trunc shall be
played on a board of truncated octahedra. This is of course the source of the
name Trunc — just like Hex, it’s a truncation of the name of the cell shape.

Figure 3: Left: the truncated octahedron. Right: a piece of its space-filling
tessellation; several vertices common to four cells are visible.

The truncated icosahedral tiling can also be seen as the Voronoi tessellation
of the body-centered cubic lattice. The body-centered cubic lattice is the set
of all points in Z3 whose coordinates all have the same parity. Its points are
the cell centres. The cells themselves partition space around these so that each
point belongs to the cell whose centre it’s closest to: that is, each cell is the set
of all points closer to the centre of a cube than to any corner.

1I claim a connection to our theme eight, that is two to the three: I’m investigating what
becomes of Hex when one changes each two to a three!



In general the tiling by n-dimensional (regular) permutohedra, of which the
hexagonal and truncated octahedral tilings are the two- and three-dimensional
cases, has only n + 1 cells meeting at each vertex, and so could serve as a tiling
on which to base a n-dimensional game. Indeed, in his consideration [3] of the
Brouwer theorem in dimensions n > 2, Gale prefigures this entire class of board
shapes (including the Trunc board), specifying their duals as the graphs on Zn

whose edges are all the parallel translates of nonzero vectors in {0, 1}n. Gale
even goes on to invoke n-player n-dimensional games of Hex, but for n > 2 his
games permit multiple winners, and so for our purposes are unsatisfying.

Before moving on, we touch on a rather different way a three-dimensional
connection game might have a border-based winning condition, found in Cameron
Browne’s Rombo [2]. In order for borders in three dimensions to be pathlike,
they must consist of the points on the boundary of a three-colouring of space —
but not all three of these colours must belong to a player! So suppose we have
only two players, and take unfilled cells as our third “colour”. Then, if the filled
cells form a simply connected clump, all the borders will be visible from the
outside and lie on the surface of this clump, where they’ll be just the dividing
lines between black and white.

Rombo is a two-player game, played on an infinite tiling of rhombic dodec-
ahedra. The game begins with a small cluster of four filled cells, two of each
colour, with exactly one border loop. The players alternately add cells to this
cluster until a second border loop is created. At this point, one of the players’
colours is on the inside of both loops, as viewed from unfilled space, and the
other is on the outside; the latter player is declared the winner. The rhom-
bic dodecahedral board does allow four border segments to meet at a point, so
Trunc had to reject it; but since Rombo isn’t concerned with using the borders
to pair points up, it can simply shrug this off. Nonetheless, when four border
segments do meet at a point, one might defensibly choose to count the resulting
configuration of borders as either one loop or two, and Browne recognises both
variants.

Trunc takes a cube for the shape of the whole board — actually, not quite,
but this’ll do for two paragraphs. The faces of a cube can be three-coloured
symmetrically, in the colours of the three players White, Gray, and Black, so
that all three meet around each vertex, providing endpoints for the borders.
(We couldn’t have done this three-colouring with a tetrahedron, say.) By happy
coincidence it’s possible to find good cubical subregions of the tiling: this is
easy to see in terms of the body-centered cubic lattice, which already has the
symmetries of the cube around any point. A cubical subregion is exemplified
in Figure 4. Again, to give the border endpoints prominence, a layer of cells
surrounding the board is coloured from the outset, with the cells verging on an
edge or a vertex split into two or three coloured regions, respectively.

Our cube has four border endpoints of each handedness: around the un-
primed corners the colors are arranged cyclically in one sense, around the primed
corners in the other. Each border must join two endpoints of opposite handed-
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Figure 4: A small cubical board, from the outside. Corner a′ is hidden.

ness. If we colour in all the cells arbitrarily, the borders might join the primed
to the unprimed corners in any of the 4! = 24 conceivable ways. But there’s
no satisfactory way to assign a winner to each of these. No player deserves to
win more than any other when the borders (or even a single border) join any
corner to the diametrically opposite one, since there are symmetries preserving
this configuration but replacing any colour outside the board by any other.

Trunc resolves this difficulty by moving to a quotient space: that is, we glue
(or formally, identify) parts of the board together (think of gluing together edges
of a rolled-up rectangle to form a cylinder, say). The invocation of a quotient
space has some precedents among existing connection games, among which are
Mark Thompson’s Gaia [1, pp. 110–112] and Bill Taylor’s Projex, both played
on projective planes.

In the case of Trunc we identify all pairs of opposite points in the cube:
this means sticking whole three-dimensional volumes of space together, point to
corresponding point, so it might be a bit tricky to carry out as a gluing unless
you have a fourth dimension handy. This identification gives the Trunc board
a singular point at the center of the cube around which the space angle is 2π
steradians, half its usual value. The continuous version of the board is no longer
a smooth manifold but an orbifold, i.e. locally (in our case even globally) the
quotient of Euclidean space by a finite group action, here the action of a cyclic
group of order 2 by reflection about the cube’s center. The boundary of the
board is the hemi-cube, an abstract polytope of 4 vertices, 6 edges, and 3 faces.
Abstract polytopes are objects with the combinatorial structure of polytopes,
but which fail to be embeddable in Euclidean space like polytopes are: the
hemi-cube for instance is homeomorphic as a surface to the projective plane.
The hemi-cube is portrayed again more cleanly in Figure 5.
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Figure 5: Left: the hemicube as double cover of the cube. Right: the hemicube
inside the projective plane; opposite points on the boundary of the disk are
identified.

If you’re not a fan of quotient spaces—or even if you are—feel free to interpret
the game as played on an unidentified board with a rule that any move must
colour in two diametrically opposite regions, unless it takes the very middle
region.

The identification unifies each unprimed border endpoint with its primed
partner at the opposite end of a body diagonal. We use the unprimed letter for
the identified point. In a finished game the endpoints are still joined in pairs:
the singular point at the centre causes no problems, since it’s in the middle of
a cell and so no borders pass through it. This means a can’t be joined to a′,
since these two are now the same point; thus we’ve gotten rid of all the cases
that were giving us problems defining a winning condition, where the borders
followed body diagonals. On the other hand any of the four identified border
endpoints can be joined to any other, since the board has become non-orientable.
This gives three possible pairings of border endpoints: a—b and c—d; a—c and
b—d; or a—d and b—c. In Trunc each of the three players has one of these as
winning condition: a player wins in Trunc if the borders follow the board edges
not incident to their own colour. For instance Black’s objective is to join the
border endpoints so as to pair a with b and c with d.

The goal of Trunc can be restated in the connection game spirit, just as for
Hex, by focusing not on the borders but on the structures of filled cells keeping
them apart.

In three dimensions, to contain a one-dimensional border and prevent it
escaping, we must consider a two-dimensional surface. Hopefully it’s intuitively
clear what a surface of cells is; if not, you may wish to think of it as the cells
cut by some surface in real space that meets no vertices of the board, or as a
collection of cells such that any pair of adjacent cells (not on the boundary)
forms part of two triangles.

Say that a surface of cells is impermeable if it contains no triangles in which
all three colours appear. An impermeable surface is impermeable to borders,
by the very definition of borders. So if Black, say, can create an impermeable
surface cutting off a and b from c and d, the borders can only join the endpoints



in these pairs and Black has won. The converse holds too: if Black has won,
then there’s some impermeable surface cutting off a and b from c and d. It’s
easy to choose one that doesn’t intersect any border; the borders that are closed
loops can be freely placed on either side. That is: a player wins in Trunc if they
separate the border endpoints two and two, into the pairs they want to connect
with borders, by an impermeable surface2.

One possible winning impermeable surface for Black, seen darkly through a
glass which smoothes out the discreteness, meets the boundary of the board in
the dotted loop in the right side of Figure 5. The surface itself, distorted, could
look something like Figure 6.

Figure 6: Possible colouration of an impermeable surface, with a fringe coloured
as the boundary of the board.

The definition of an impermeable surface conspicuously lacks any condition
on the colour of the cells it contains that would associate it with the player
it wins for. Indeed, a majority of the cells comprising a winning impermeable
surface S for Black may be nonblack. But there is necessarily at least a path of
black stones connecting the two (pre-identification) black faces within S, which
we might call the surface’s trunk. This can be established by an argument
about two-colour borders internal to S, each of which must verge on the same
two colours along its length, and one of which must run from black face to
black face with the trunk alongside it. Complications arise since there can exist
a multiplicity of termination points of such borders, one at every place the
boundary of S crosses an edge of the board. We leave the details for the reader
to fill in.

The behaviour of borders in three dimensions suggests a family of two-
dimensional two-player games, of which Hex is one member, which are of interest
in their own right.

Think of the gray cells adjacent to the gray side of the board as an outgrowth
of the cells outside the board, such that all the cells adjacent to the outgrowth are
either white or black. The borders cleave to this outgrowth, and so they behave
as they would in the two-dimensional two-player game played on the surface of
cells containing the adjoining white and black cells. If the outgrowth contains
no connection between the two gray sides that existed before identification, i.e.

2With this winning condition in mind Richard Guy suggests the alternate name Waldorf :
one aims to ensure that two of the vertices are walled off from the other two.



its boundary is an orientable surface, then just as in regular two-dimensional
Hex it’s impossible that a be joined to c, by dint of orientation. Thus if Gray has
won, the gray outgrowth must contain this connection (this is another approach
to seeing the existence of the trunk). On the other hand if one of the other
players, say Black, has won the game of Trunc, then in particular they have
won the game played against White on the gray outgrowth, and symmetrically
the game against Gray on the white one.

Note that these two-player games don’t actually arise within Trunc as such,
since the third player can interact with them, changing the effective board shape,
while the game is still ongoing. From the perspective of Trunc, which we mo-
mentarily set aside, these two-player games can at best be taken as alternate
simplificatory ways of looking at the goal.

If the gray outgrowth does have orientable boundary, it may a fortiori even
lack handles, in which case the game on its surface is topologically equivalent to
Hex, differing only in the tiling, and so is little different in flavour. But if there
is a handle, the character of the game changes more essentially. Not only do we
lose the obvious connection interpretation of Hex (both White and Black may
establish connections), but we lose even the fundamental property that making
a move in your colour never hurts you. This property is the key ingredient in
the non-constructive proof that Hex is a first player win, and hence the proof
fails on handled surfaces.

Figure 7 exemplifies the simplest counterexample, with only a single handle.
I’ve drawn the board with spatial symmetries exchanging black and white to
underscore the symmetry of the position. Black has taken the entire top of
the handle, which runs left to right in the foreground, and White the entire
valley under the handle, which runs top to bottom and is mostly obscured.
In particular both players already have made end-to-end connections. There
remains just one cell left to fill, on the handle’s underside. Check that whichever
of White and Black fills this cell loses.

Figure 7: A position of the game on the one-handled surface, to be lost by the
next mover. A hole has been cut in the handle to reveal the one unfilled cell.

More generally, positions of games on handled surfaces are a generalisation
of Misère Hex, which has been discussed by a number of previous authors,
among them by Jeffrey Lagarias and Daniel Sleator in the collection from the
first Gathering for Gardner [5]. They determine which of the two players has



the win for each board size, invoking a monotonicity property which assigns a
preference ranking to the possible states of each cell and says that changing a
single cell by a more preferred state can never hurt the player it’s for. (“Making
a move never hurts you” is another example of a monotonicity property.)

Given a board with one large handle, the regular Hex board can be embedded
along the handle’s underside, with the rest of the board solidly coloured in two
pieces on the model of Figure 7. Then connecting a to b and c to d on the
embedded board, which is Black’s usual winning condition, will win the larger
game for White, and vice versa. Examples of this nature establish that no
monotonicity properties can hold globally in games on handled surfaces, and so
we don’t expect any analysis like Lagarias and Sleator’s to extend to this larger
class.

If you find this loss of monotonicity undesirable, you might compensate
by introducing a variant rule which allows any player to make a move of any
colour. This gives each player the same set of options from each position; of
course, the underlying game remains partisan, i.e. sensitive to who’s Black and
who’s White, since the evaluation of finished positions isn’t colorblind. In Hex
the extra options this variant grants never help the player to move, and so don’t
affect the strategy at all, which suggest that either the ruleset with the variant
or the one without it could be the “correct” generalisation of the rules of Hex.
In two-player games on handled surfaces, the variant eliminates all P-positions,
or Zugzwangs, such as the one of Figure 7, so that if a player can win from a
position with some player to move, then they can in fact make a winning move
themself. Check that our construction to give Misère Hex as a position of a
game with one handle in fact now reduces to normal Hex.

The position of Figure 7 embeds in a Trunc endgame, showing that in Trunc
too it’s possible to make a move which hurts you. So one might apply our
variant rule to Trunc as well. This again would eliminate the class of positions
where the player to move can’t win, regardless of who that is. But these are not
the only class of potentially distasteful position. Like many three-player games,
kingmaker positions arise in which one player can’t win but may decide which
of the other two will, and the variant rule does nothing to address these. For
example, Figure 8 depicts the two unfilled cells of a Trunc game two moves from
completion. The cells surrounding them are coloured as suggested by the face
colouration in the figure, and the border endpoints touching the unfilled cells
are connected to the board corners as labelled. If Gray is to move from this
position followed by Black, then, with the variant rule or without, Gray is in a
kingmaker position, as you can check.

This writeup has left a number of pragmatic points bearing on the gameplay
unaddressed — What’s a suitable board size? Is a pie rule still necessary, to cor-
rect for any first-player advantage which may exist, and if so what’s the correct
implementation for three players? How is one even supposed to go about build-
ing or otherwise manipulating the three-dimensional board? — but my hope
is that interested players will come upon reasonable answers to these. I myself
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Figure 8: Two unfilled cells which constitute a kingmaker position for Gray,
front (left) and inside (right) views.

would be keenly interested to hear of any discoveries, strategic or mathematical,
about Trunc or these games on handled surfaces.

I am grateful to Cameron Browne for informing me of precedents among
connection games of some of the ideas here.
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